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SUMMARY

The recent interest in radiofrequency (rf) induction heating as a

means of producing a plasma has prompted work on theoretical techniques

that can adequately model the physical processes occurring in the plasma.

Efforts to solve the rf induction plasma problem have been hampered by a

lack of complete input data reported by the experimenters, most notably

the work coil geometry and the magnetic field intensity at the plasma

radius.

The numerical techniques and approximate analytical closed form

solutions of the energy balance equation and Maxwell's equations used to

describe the plasma require a knowledge of the electric and magnetic field

values at the plasma radius and the coil geometry. The only comparisons

of theoretical solutions with experimental results to date have been in-

direct comparisons based on reported power requirements.

Measurements of the temperature profiles in an rf argon plasma

were made over magnetic field intensities ranging from 20 amp turns/cm to

80 amp turns/cm. The results were compared with a one-dimensional numeri-

cal treatment of the governing equations and with an approximate closed

form analytical solution that neglected radiation losses.

The average measured temperatures in the plasma compared well with

the numerical treatment, though the experimental profile showed less of an

off center temperature peak than predicted by theory. This may be a re-

sult of the complex turbulent flow pattern present in the experimental
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torch and not modeled in the numerical treatment. The radiation term

cannot be neglected for argon at the power levels investigated. The

closed form analytical approximation that neglected radiation led to tem-

perature predictions on the order of 10000K to 2000"K higher than measured

or predicted by the numerical treatment which considered radiation losses.

The governing equations are highly coupled to the electrical con-

ductivity of the working fluid. An aerosol of submicron tungsten particles

was added to the argon to effect a significant increase in the electron

number density and temperature measurements were taken and compared with

the theory. The temperatures were of the order of 10000K lower than for

the cases of pure argon, and compared well with the theory at tungsten

partial pressures of 4.3 x 10- 3 atm and 6.1 x 10- 3 atm. A tungsten par-
-2

tial pressure of 3.6 x 10-2 atm led to a divergence between the theory

and the experiment as the tungsten atom number density reached the point

that electron-tungsten collisions could no longer be neglected in the

theoretical treatment of the electrical conductivity.

A parametric study was conducted to determine the effect of varia-

tions in the inputs to the analysis which can be varied experimentally,

and to determine the effect that the uncertainty in the transport proper-

ties of argon has on the predicted temperature profiles.



CHAPTER I

INTRODUCTION

The recent interest in radiofrequency (rf) induction heating as a

means of producing high density plasmas has prompted work on theoretical

techniques that can adequately model the physical processes occurring in

the plasma. The theoretical treatment must include the heat transfer

problem and the determination of the electromagnetic field intensities

inside the plasma. Previous theoretical work on modeling the d.c. arc

plasma forms a basis for treating the energy balance problem, but these

equations must now be treated simultaneously with the electromagnetic

field equations as they apply to the induction arc.

Efforts to solve the rf induction plasma problem have been hampered

by a lack of complete input data reported by the experimenters. The work

coil geometry and the magnetic field intensity at the plasma radius are

needed as starting points for quantitative comparisons of spectroscopi-

cally measured temperature profiles. Experimentally measuring the mag-

netic field intensity at the plasma radius is difficult since the coil

currents are high (of the order of 50-150 amperes, rms) and the frequen-

cies are high (typically between 2 and 30 MHz).

The development of the induction arc stems from work by Hittorfl

on the low pressure electrodeless ring discharge. Babat2 is credited

with inventing the induction arc in 1942 when he used a powerful vacuum

tube oscillator to raise the pressure of a ring discharge up to atmospheric



level. T. B. Reed3 first demonstrated in 1961 that an "induction torch"

at one atmosphere could be produced. He used a 26 mm outside diameter

open ended quartz tube surrounded by a 3/16 inch copper work coil to pro-

duce an argon plasma. Spectroscopic temperature profiles of argon plas-

mas were determined by Goldfarb and Dresvin, Schultz and Anderson,5 and

Rovinskii, Gruzdev, et al.,6 and the results of their work are presented

in Figure 1, taken from Eckert's7 survey of the state-of-the-art of in-

duction plasmas. Stokes8 reported temperature profiles of an argon plasma

at one atmosphere along with the power dissipated per unit length of work

coil which Eckert9' 0 used as a basis for comparison with the numerical

solutions of Pridmore-Brown11 and his own closed-form analytical predic-

tions.9,12 Stokes used a water-cooled quartz tube with a 2.3 cm inner

radius and excited the gas at 3.8 MHz. The power dissipation was deter-

mined from the measured heat flux into the cooling water and from the

total radiation emitted. The applied magnetic flux was not reported. A

wide range of magnetic flux intensities was used in the calculations

until the predicted radiation and conduction values matched those re-

ported in the experiment. The predicted temperature profiles were in

good agreement with spectroscopically measured values though the experi-

mental profiles were flatter, as seen in Figure 2. The experimental tem-

perature profiles were determined from continuum intensity measurements

at 4288 .

This dissertation describes work aimed at providing spectroscopi-

cally determined radial temperature profiles in an rf produced argon

plasma over a wide range of experimentally measured applied magnetic flux
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intensities and to compare the results with a representative numerical

analysis based on the one-dimensional Elenbaas-Heller equation and with

an approximate closed form analytical solution. A better judgment can

then be made on the accuracy of these theoretical treatments. Additionally,

the argon plasma is seeded with submicron tungsten particles to effect a

significant change in the electrical conductivity of the gas and a com-

parison is made between the experimentally observed changes in the tem-

perature profiles with those predicted by existing theory.



CHAPTER II

THEORETICAL STUDIES

Introduction

The heat balance at each position in an induction plasma arc is

given by the Elenbaas-Heller equation which balances the heat generated

through current dissipation with conduction, convection, and radiation

losses. 13 ,14 The heat balance equation is coupled to Maxwell's equations

governing the electric and magnetic fields in the induction plasma and

both sets of equations must be satisfied.

Analytical and numerical attempts to solve the problem are hindered

by a lack of experimental data that include all input conditions required

for quantitative comparisons, most notably the magnetic field strength

inside the work coil. Numerical methods are cumbersome and require a

digital computer. Analytical studies have failed to produce quantitative

predictions universally applicable to the variety of experimental condi-

tions and gases used in rf plasma work. Eckert and Brownl1,12 compared

their numerical method to the experimental work of Stokes,8 but even in

this case Stokes did not measure the ampere turns of the induction coil.

This measurement is needed to determine the magnetic field strength inside

the work coil.

The transport properties of argon are examined in this chapter

because the quantitative results of the solution to the plasma problem

are dependent on the values chosen for the transport properties and the



theory serves as a basis for predicting the properties of a tungsten

seeded argon plasma.

Governing Equations

Consider the plasma to be an infinite axially symmetric cylinder

with an applied alternating axial magnetic field

Hz = H exp(i2nyt) (1)z o

where v is the frequency of the alternating current I in the work coil as

shown in Figure 3.

Maxwell's Equations

15The relevant Maxwell equations are

X bB bH
VXE= -- p- (2)it bt

VXH=J+ bEVx + =J+e (3)bt bt

J = E (4)

where E and H are the induced electric and magnetic field intensities, B

is the magnetic induction, D is the electric displacement current, J is

the electric current density, and a is the electrical conductivity of the

plasma. Equation (4) assumes a purely resistive plasma, i.e., there is

no imaginary component of the conductivity. In the absence of polariza-

tion or magnetization,
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B = H (5)

D = eE (6)

where p is the permeability and e the permittivity of the gas. The

Poynting vector S, defined by S = E X H, represents the flux of electro-

magnetic energy and points in the direction of propagation of the wave.

Following the treatment of Brown, et al.16 as modified by Freeman

and Chase,17 equation (2) expressed in cylindrical coordinates for an

electric field with component Ee only and magnetic field with axial com-

ponent Hz only becomes:

dE bHz
Ee + r dr 

= - Z r (7)

or, from equation (1)

Sd
rr rE = - i2nHz (8)

Similarly, equations (3) and (4), in the absence of displacement

currents, can be expressed in cylindrical coordinates for the applicable

electromagnetic field components

dH
Z

dr = - J= - aE (9)

The assumption of a good conductor (i.e., no displacement currents)

is equivalent to requiring
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a >> e 2n (10)

This is a valid assumption for argon at 4 MHz over the temperature

range investigated as can be seen from the electrical conductivity values

for argon presented later.

Equations (8) and (9) may be combined to eliminate either Hz or E.

Differentiating equation (8) and substituting into equation (9), the equa-

tion for the induced electric field is obtained

d2E 0 dE
2  r dr - i2vp~+ +- E = 0 (11)

dr r

If Ee is divided into its real and imaginary parts, equation (11) results

in two equations

d ER 1 R ER
2 +r dr 2 +  2 E = 0 (12)

dr r

d2E I dEI E
2 r dr 2 2  ER = 0 (13)

dr 2  r dr r

The rate at which electromagnetic energy in a unit volume is dis-

sipated can be arrived at from equations (2) and (3). Scalarly multiply-

ing equation (2) by H and equation (3) by -E and adding the two equations

produces

-b H2 + cE2) j*E (14)
H( X E) - E( X H) = -eE (14)



Now using the vector identity

V.(E X H) = H-(V X E) - E.(V x H) (15)

to get

V.(E X H) = - bP H + eE ) - J.E (16)
bt

and integrating over a unit volume dT, and applying Green's theorem to

the left hand side of equation (16), one obtains

S(E X H).ds = - - J (eE2 + pH2 )dT - J.EdT  (17)
s V V

The first term on the right hand side represents the time rate of

decrease of stored electromagnetic energy in the volume and the second

term on the right hand side represents losses by Joule heating or gains

by an applied electric field. The left hand side then must represent the

net outward flow of energy across surface s and leads to the definition

of the Poynting vector S

S=EXH (18)

which represents the flux of electromagnetic energy. For steady state,

Poynting's theorem is then

V.S = - J.E (19)
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or from equation (4) and for our geometry

V.S = - E 2  (20)

If E is divided into its real and imaginary parts, EI and ER, the

time averaged root mean square value of the electric.field in the e direc-

tion is then

E = -2 (E 2 + ER2) (21)

and the power input per unit volume for use in the steady state energy

balance equation is then GE 2 or

aEe2  a 0 (E 2 + E 2) (22)

Energy Balance Equation

The energy balance equation equates the time rate of change of

energy in a unit volume with the divergence of the heat flux, the power

radiated, and the electromagnetic power dissipated by the applied electric

field

DT 2
pC R- = V.XVT + GE - (23)p Dt e

DT
where 2 stands for the total time derivative of the temperature, T, p is

the plasma density, C the specific heat at constant pressure, X is the

thermal conductivity, and i is the radiation source strength. The second
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term on the right side of the equation represents the dissipative compo-

nent of the electromagnetic energy.

Expanding equation (23) in cylindrical coordinates and assuming a

constant pressure axisymmetric plasma, one obtains

S + u T + u TT 1 gT (24)
pC D it r br z 2 r br

P T b br 2  b

+ 2 2 + oE o 2 . i = 0

where u and u represent the radial and axial gas velocities.

Assuming steady state conditions and rearranging the terms, one

obtains the two-dimensional energy balance equation

2 2 22(2T +1 T T dX bT + (6T (25)
2 - r 7 2 dT br' , bz

br bz

( ,.T)-S=
-pC u -+u + E 20p r br + u bTz 6

The energy balance equation may be reduced to one-dimensional form

if it is assumed that the temperature gradients in the axial direction are

very small compared to the temperature gradients in the radial direction

2T )2T BT2 2  22 T<< - and << \ .

bz br 2  <<

i d dT dT 2
r dr r r - pC Ur r + - =0 (26)
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The radial flow velocity, ur, is assumed zero in the one-dimensional

analytical treatments of Eckert9, 18 and Rovenskii, et al.,19,20 and in the

one-dimensional numerical treatments by Brown, 11 and Miller and Ayen. 21

The work of Chase, 22 ,23 however, shows that the rf field imposes a magnetic

pressure gradient that causes the charged particles to preferentially mi-

grate toward the center of the plasma, and through collisions give a net

inward radial velocity that forms a double vortex flow. Experimental work

by Chase 22 on an rf plasma with a configuration similar to the one used in

this research shows the radial velocity to be of the order of magnitude of

10% of the net axial flow velocity.

Equation (26) may be linearized by introducing the heat conduction

potential defined by

T
S= TX dT (27)

With the aid of equation (27), equation (26) becomes

d 2S dS pCr dS 2
2 r dr dr E0 (28)

dr

If Ee is divided into its real and imaginary parts as shown in

equation (21), equation (28) becomes

d2S 1 dS pCp dS 2 2
dr2  r dr C dr +  (E + E - 0 (29)

and equations (12,13, and 29) along with the continuity equation in

cylindrical coordinates
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SIdr d(rp) = 0 (30)

and boundary conditions:

T
wall

S = XdT
dS o
-r 0 dE Edr

dER ER
r = 0 E =0 r = R R+ 0 (31)

R dr r
EI =00 dEI  EI

-- + - - 2nTpvH(R)dr r

form a one-dimensional system of equations that describe the plasma.

Solution Techniques

Eckert7 provides an up to date review of the reported techniques

used for numerical solutions to the equations governing the induction arc

as well as the assumptions necessary for approximate closed form solutions.

He pointed out that lack of complete input data from reports of experimen-

tal work makes quantitative comparisons difficult and that experimenters

did not attempt to minimize two-dimensional or convection effects in their

work.

Keefer24 at the University of Florida, developed a one-dimensional

25
numerical technique programmed under the direction of Sprouse at the

Arnold Engineering Development Center. This program (called SUPERSIX) was

obtained and converted to run on the Univac 1108 at Georgia Tech to permit

a comparison of the experimental work reported in this dissertation with

a numerical analysis of the governing equations.

The analysis reduces the sixth order system of equations given by
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equations (12, 13, 29, 30) to six first order differential equations as

follows. Defining

S o

Y S =T (32)
Sw Tw dT

where T is the input wall temperature and
w

dy1

Y2 dx (33)

Y3 = ER

dER

Y4 = x dx

Y5 = E

dE I

y6 = x rx

where x is the non-dimensional radial position x = r/R, one obtains from

equations (12, 13, 29, 30)

dyI

dx = Y2 (34)

dy 2  Rpu C (Yl R2 y 2 2 R2 (( R p 1 1 (y 2 2 )dx xX 2 (y 3  5  sW w

(continued)
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dy 3  1
dx =x Y4

dy 4  I 2
d- - 2R x 23 vy

dy
5  1

dx x Y6

dy 6  1 2
= - y + 2R xop 2nvyd x 5 3

where R is the plasma radius with boundary conditions

x = 1 : = 1; y5  = - 2pavRH(R); y 3 + Y4 = 0 (35)

x = 0 : y 2 = 3 = Y5 = 0

A Runge-Kutta integration scheme is used to solve the system of equations

(34,35) with the required inputs being frequency, wall 
temperature, plasma

radius, and magnetic field strength at the outer surface of the plasma.

The radial flow velocity at the wall is input through the term purR. Pro-

visions are made in the program for parametric analysis using the last

plasma profile as the initial guess for a new case where only one input

parameter is slightly varied. The analysis does not take axial convection

into account, as can be seen from the governing equations. Typical run

times on the Univac 1108 for convergence to the first case are 20-30

minutes.

The analytical work of Gruzdev, Rovenskii, and Sobolev
1 9 ,2 0 provides
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a simplified closed form solution to the one-dimensional problem that is

useful for comparison with the numerical method and the results of this

research. By considering E and H as root mean square values such that the

value of the Poynting vector becomes E-H and neglecting radial convection

and radiation, the one-dimensional energy balance equation for steady

state becomes

V.kXT + V.EH = 0 (36)

or in cylindrical coordinates

r dr dr

Since both fluxes vanish at r = 0

X dT = EH (38)
dr

From equation (9)

dT H dH
dr a dr

Integrating equation (39) from the outer boundary r = R where the temper-

ature equals the wall temperature, Tw, and the magnetic field has a value

at the boundary of HR
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2

a(T) X(T) dT = - H(r) dH - 2 - (40)
T R R
R

If the magnetic field as a function of r is known, the temperature at

any point may be calculated. If H(O) << HR, which is a good assumption

according to the experimental work of Eckert26 and the theoretical predic-

tions of the numerical analysis, then the maximum temperature (which occurs

at the center of the plasma in the case of no radiation) may be approxi-

mated from the magnetic field at the plasma radius from

T(0)

HR = [2 o(T) X(T) dT1 (41)
Tw

The choice of T does not affect the final T(0) for a given HR for

argon as long as T < 40000K because of the very low values of a and X

below about 5000 0K.

Transport Properties

The values chosen for the transport properties of .argon, namely

the electrical and thermal conductivities and radiation source strength,

bear directly on the quantitative results of the analysis of the govern-

ing equations. The values are also important because they form the basis

for predicting the changes in the properties in those cases where the

plasma was seeded with tungsten.

Electrical Conductivity

The mobility, p, of a gas is defined in terms of the drift velocity
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of the electrons, u and the applied electric field, E

= = (42)

and the electrical conductivity, a, in terms of the current density, J,

is given by

J = E (43)

If it is assumed that an electron loses all of its momentum in each col-

lision, then

qE = m uv (44)e e

where q is the elementary electric charge, me is the mass of an electron,

and v e is the electron collision frequency. From equations (43) and (44)

the average drift velocity is

u= (45)
my
ee

and the current density is

J= qN U (46)

where N_ is the number density of electrons. Substituting equation (45)

into equation (46)
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q2N E
J- (47)

my
ee

or from equation (43)

q2N - (48)
my
ee

The electron collision frequency can be expressed in terms of Qi (the

effective momentum transfer collision cross section between electrons and

species i of gas j), the velocity of the electrons ve, and the number

density of species i of gas j Nj.
1

vE = N v Qi (49)

where the mean quantity v Q may be approximated by v Q when QJi is
e ei me ei el

taken at v . Then
e

v Qei (50)
e eJ 1 i ei

If the electron velocity distribution is Maxwellian

8 k T e

v = (51)
e

where k is the Boltzmann constant and Te is the electron temperature.

Then
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q2N
o q N (52)

m 8kTe  Nj

Si ei

The Saha equation predicts the number density of electrons from the number

density of neutrals of gas j, Ng

N 2u (T) (2Tm k)4  - AE(
S+ T 4  exp -kT (53)

u (T) e

where h is Planck's constant, cpj is the ionization potential of gas j,

AE is the lowering of the ionization potential due to increased charged

particle interactions found in the high temperature high density environ-

ment of a plasma, and uj+ and uj are the partition functions for singly

ionized and neutral atoms defined by

sn -E /kT

u = g e (54)

s=l

s=n

z g +-Es/kT

s=l

+
where gs and gs are the statistical weights of the neutral and singly

ionized atoms at excitation level s (s = 1 ground state) and E is the

bound energy of level s. Substituting equation (53) into equation (52)

and simplifying
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h2  N Qe
j i ei

For the case of argon only, equation (55) becomes

2 (e e NAr 2 u(T) (e- \ kT

Ar u0 (T) (56)

h2  E NAr Ar
i ei

Figure 4 is a compilation of results from the theoretical works of De-

voto,2 7 Yos, 28 Cann,29 and Cambel,3 0 and the experimental work of Emmons,

Lin et al.,32 and Lau.3 3 The empirical values used in this study are

determined by an analytical expression that best represents the available

experimental and theoretical data.

For the case of argon seeded with submicron tungsten particles,

the summation over j in equation (55) must now include both argon and

tungsten. Performing this summation and factoring out the expression for

pure argon conductivity one obtains

ww Ar
uN u+ Ar 

Ar w Ar exp kT
0 u u

Ar+w 0 0 + (57)
Ar+w Ar Nw Q

i i ei

NAr Ar
i Qei

Ar w 34
Substituting in values for Cp and Cp from Drawin and Felenkok and



1 1 1 1 ! I

SEmpirical values used 0,'

S5 in numerical analysis ,6

o Theoretical / ,
- --- Devoto (27)

Yos (28)
4- Cambel (30) V Z

Cann (29) 0/

> Experimental - ,
-3- o Emmons (31)

* Lin et al. (32) , /
E3 Lau (33) 'o

4 5 6 7 8 9 10 11 12 13

Temperature, T, (1030K)

Figure 4. Theoretical and Experimental Values for Electrical
Conductivity of Argon at High Temperatures



25

W
Ar Ar 35 +

average values for u and uA r from Olsen and taking - 1 from
36 0 w

Laun equation (57) becomes

1 + \(.519/) exp [7.78/kT]

Ar+w N Q (58)
1 ei

1 +
E NAr Ar

i i Qei

The electron collision cross sections for tungsten have not been

calculated or experimentally measured, but based on the cross sections of

37 38
other metals and on the predicted values of uranium and similar metals,

w. Nr Ar

it was assumed that ( Nw Qei)/( Nr Q) << 1. This assumption is sus-
i i I ei

pect for tungsten number densities greater than one percent of the argon

number density.

The effect of the seed can be seen in Figure 5 which shows the

electrical conductivity of seeded argon from equation (58) compared with

the conductivity of pure argon.

Thermal Conductivity

A compilation of argon thermal conductivity data is plotted in Fig-

ure 6 showing the theoretical work by Devoto,
2 7 Yos,28 Admur and Mason, 3 9

29 31 4 0

Cann, and the experimental work of Emmons, and Knopp and Cambel.

An analytical expression that yields the empirical values used in

the numerical analysis was fit to the experimental data. It is felt that

the experimental values are more reliable since they are easy to measure

and are in good agreement, while the theoretical basis for thermal con-
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ductivity is quite complex.

Devoto27 conveniently treated the contribution of the electrons to

the thermal conductivity of the plasma separately, so the effect of the

addition of tungsten seed was assumed to be an increase of the electron

contribution to the thermal conductivity, due to an increase in the elec-

tron number density. The effect of the tungsten collisions on the heavy

atom thermal conductivity was neglected because of the low tungsten par-

tial pressures. For evaluations of the case of tungsten seeded argon,

the thermal conductivity due to the heavy atoms was assumed the same as

that of pure argon. The contribution of the electrons to the thermal con-

ductivity was calculated by taking the value of the electron component

of the thermal conductivity of pure argon at the temperature required to

produce the same number density of electrons as was present in the seeded

case. Figure 7 is a plot of the thermal conductivity assumed in the analy-

sis and a plot of the thermal conductivity of the tungsten seeded argon

for tungsten number densities used in the experiment where the electron

contribution is added at a temperature that yields an equivalent electron

number density for the case of pure argon. This approach to accounting

for the tungsten is considered to be as good an approach as possible at

the present time due to lack of data on heavy metal collision cross sec-

tions.

Radiation Source Strength

The values used in the numerical analysis for the radiation source

31
strength term were taken from the d.c. arc data of Emmons modified below

9000K to bring them more in line with the theoretical estimates of Horn4 1
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42
and the more recent induction discharge data obtained by Stokes. It

was felt that the induction arc data were more reliable at the lower tem-

peratures. Stokes42 points out that "An important difference between the

induction discharge experiments reported here and the arcs used for most

of Emmons work is that stable, much larger plasmas can be obtained at

11
low peak temperatures with induction heating." Pridmore-Brown, in his

numerical analysis, did much the same things at the suggestion of Eckert

who felt that Emmons' values were too high at low temperatures. Miller

and Ayen21 arrived at a radiation source strength term for their two-

dimensional analysis by extrapolating the data of Evans and Tankin43 to

lower temperatures which yielded values significantly below those of

Emmons at temperatures below 10,000*K.

Figure 8 is a plot of the experimental data of Emmons,31 Stokes,42

Evans and Tankin,43 and Schreiber and Hunter along with the theoretical

values derived by Horn,4 1 and the values predicted by the Kramer-Unsold4 5

theory. The empirical values chosen for this work are also plotted. The

radiation source strength term was not modified for the addition of tung-

sten seed. Work by United Aircraft46 on tungsten seeded plasmas with

similar operating characteristics shows less than a 10% increase in power

radiated for tungsten partial pressures on the order of 0.005 atm. This

assumption may not be valid for higher tungsten partial pressures.

Effect of Magnetic Field

The magnetic field strength in the coil for the case of no plasma

represents a maximum, since the field strength within the plasma is re-

duced. Assuming an rms current of 100 amps in the work coil and an effec-
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tive turn per cm of 0.52 (verified by experiment--see Appendix A), the

magnetic field intensity would be 52 amp-turns/cm, which corresponds to a

magnetic induction of about 5 x 10- 3 webers/m2 , or 50 gauss. The work of

Devoto2 7 has shown that it would take a magnetic induction of one to two

orders of magnitude greater to cause any change in the transport proper-

ties. Further, the results of the numerical analysis and the experimental

work of Eckert4 7 and Trekhov et al.4 8 show the magnetic induction inside

the plasma to be an order of magnitude lower than the field strength at

the plasma radius.
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CHAPTER III

INSTRUMENTATION AND EQUIPMENT

RF Plasma Generator

The radio-frequency plasma generator and associated gas flow system

was designed and built by Dr. Robert A. Benns as part of his dissertation

research. A detailed description of the equipment and theory of operation

are found in his dissertation.49

The generator operates at 4 MHz and utilizes an air cooled Eimac

4CX-35000C tetrode with an output power of up to 85 kW. The torch and

operating controls are located in a copper lined room with a viewing port

in the wall that allows spectroscopic observation of the plasma from the

adjacent diagnostics room. The copper shielding is necessary to insure

that stray rf fields are not present in the diagnostics equipment. The

plasma generator operating parameters are listed in Table 1.

The plasma is contained in a 40.64 cm long quartz tube with an

inside diameter of 5.08 cm and a wall thickness of 1.75 mm. A 1/4 inch

water cooled copper work coil surrounds the torch. The work coil is ap-

proximately 9 cm long with a coil pitch of approximately 2/3 turn per cm.

The pitch of the work coil is not constant but has been varied to allow

a large enough space between the second and third turns from the bottom

to permit scanning of the entire diameter of the plasma without coil

interference. The exact geometry of the coil and torch is drawn to scale

in Figure 33 of Appendix A.
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Table 1. Plasma Generator Operating Parameters

Operating Value Maximum Rating

dc plate voltage 16,500 volts 20,000 volts

dc grid voltage - 400 volts

dc screen voltage 750 volts 2,500 volts

dc plate current 6.2 amperes 15 amperes

dc grid current .14 amperes

dc screen current .50 amperes

peak rf plate voltage 15,900 volts

peak rf plate current 9.3 amperes

peak rf grid voltage 500 volts

peak rf grid current .28 amperes

input impedance 1,785 ohms

output impedance 1,892 ohms

total plate input power 102,000 watts

plate dissipation 28,000 watts 35,000 watts

grid dissipation 14 watts 500 watts

screen dissipation 200 watts 1,750 watts

grid driving power 70 watts

plate output power 74,000 watts

plate efficiency 72.5 percent
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A water cooled copper electrode is inserted through a size 12

rubber stopper in the bottom of the torch. The tip of the electrode is

coated with tungsten. The electrode serves as ground for the arc welder

during the starting process and also helps stabilize the vortex flow in

the tube. Figure 9 shows the quartz torch with the stopper and electrode

in place. The center of the electrode is open to allow a regulated amount

of gas flow through the center of the tube. The primary vortex gas flow

is from the two copper tubes inserted near the perimeter of the stopper.

The ends of the copper tubes are closed off and a small hole drilled in

each provides flow tangential to the tube wall inclined 45 degrees in the

upward direction.

The gas flow system is designed to allow any desired combination

of pure argon and aerosol to enter either the tangential flow copper tubes

or the center flow through the water cooled electrode. In practice, very

little flow could be sustained through the center electrode without plasma

extinction, thus only a small pure argon flow was used which raised the

visible plasma flame off the surface of the electrode. Samples of the

gas were taken when tungsten aerosol was injected in the plasma to deter-

mine the aerosol density. This was accomplished by operating the solenoids

that allowed the vacuum tank to draw in a measured volume of aerosol

through previously weighed filter papers. Two samples were taken for

every aerosol run to insure a consistent aerosol and to give some basis

for ascertaining the accuracy of this measurement.

The submicron tungsten particles are injected into the plasma in an

argon aerosol using the same gas flow system. This is accomplished by
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allowing a set fraction of the pure argon to flow into a large test tube

filled with dry tungsten powder. The injected argon agitates the reser-

voir of tungsten powder on the bottom of the tube and creates an aerosol

in the upper volume of the tube. The tube is mounted vertically on a vi-

brator and the aerosol is drawn off the top of the tube and mixed with

the pure argon that bypassed the tube. The major drawback is that it

takes approximately two minutes for the aerosol density to stabilize.

Because the plasma coupling has such a large dependence on the aerosol

density, stabilization of the screen and grid currents of the power ampli-

fier tube is a good indication of aerosol density stabilization. Figure

10 is a drawing of the test tube configuration. The tube is mounted ver-

tically on a vibrator.

Diagnostics Instrumentation

The plasma diagnostics instrumentation is contained in a room

adjacent to the plasma generator with a viewing port in the wall between

the two rooms. A schematic diagram of the instrumentation and optics

used for spectroscopic observation of the plasma is given in Figure 11.

The optics are mounted on a four by six foot Ealing optical table.

Magnetic optical rails and carriers are used so that the optical compo-

nents can be easily adjusted. A lens with a focal length of 743 mm

focuses an enlarged image of the plasma on the entrance slit of the spec-

trometer. The scanning mirror, mounted on a custom made precision scanner,

rotates without vibration. This causes the plasma image to move across

the entrance slit of the spectrometer. A potentiometer is mounted with

amplification gears on the scanning mechanism and the variable resistance
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is calibrated to provide a spatial position trace on the visicorder out-

put. Spatial filters are used to insure that no stray reflected light

from the plasma is reflected through the viewing port. A laser is used

to locate the optical path and allow the spatial calibration of the scan-

ning mechanism. This is accomplished by noting the visicorder indication

from the scanning potentiometer when the laser is at the torch radius.

The spectrometer is a McPherson Model 2051 scanning monochromator

with a one meter focal length and an f 8.7 plane diffraction grating.

The grating is 102 mm x 102 mm with 1200 lines/mm and is blazed for 5000 i.

An EMI 9558QA photomultiplier tube is mounted on the exit slit. The en-

trance slit width and the exit slit to the photomultiplier are set at

50 1 for all continuum observations. The light entering the spectrometer

falls on only a small part of the grating and remains entirely on the

grating during the spatial scan. The photomultiplier has 1000 V applied

which is in the linear range of the tube.

The output of the photomultiplier tube and the scanning potentiom-

eter is monitored by one of three picoammeters and recorded by a visi-

corder which uses light sensitive paper and pinpoints of light to leave

a permanent trace of the picoammeter output. The response time of the

system is limited by the visicorder which has a full scale response time

of approximately .02 second.

The absolute calibration of the system is accomplished with a

tungsten strip lamp and regulated power supply traceable to the National

Bureau of Standards. The lamp is mounted as shown in Figure 11 and a re-

motely movable mirror, identical to the mirror in the plasma room, is used
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to provide a substitute optical path. Half of a quartz tube is placed in

the path of the lamp to simulate the torch. Figure 12 is a plot of the

NBS tungsten strip lamp at 35 amps vs. wavelength and Figure 13 is a plot

of the absolute sensitivity of the optical system vs. wavelength.

The coil current is measured with a Tektronix P6021 high frequency

current probe and Type 134 current probe amplifier fed into a Tektronix

Model 597 cathode ray oscilloscope. The current probe saturates at 1 amp

rms so a Tektronix Model CT-5 high frequency step-down transformer was

mounted around the plasma work coil and was set to a 1000:1 step-down

ratio. Tektronix calibrated the transformer and current probe to an accu-

racy of three percent. A Polaroid camera attachment was used on the

cathode ray oscilloscope to record the current trace.
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CHAPTER IV

EXPERIMENTAL PROCEDURE

A typical experimental run consists of from six to ten spatial

scans of the plasma at different power settings. The first five scans

are generally pure argon. The tungsten generator is turned on and the

flow system is adjusted to inject tungsten aerosol into the argon for the

remaining scans. The flow is allowed to stabilize and the tungsten flow

is not adjusted for the scans of plasma containing tungsten.

A new quartz torch is used for each run since the high power levels

required for sustaining a plasma with tungsten aerosol usually destroys

or permanently discolors the tube used in the previous run.

The torch assembly is mounted inside the work coil and the gas flow

lines are attached. The entire assembly is then checked for gas flow

leaks since any air entering the torch will make plasma ignition virtually

impossible. New filter papers are dried out, weighed, and inserted in

the sample holders.

The new torch is spatially calibrated by setting the scanning

monochromator to the helium-neon laser wavelength (6328 1) and opening the

exit slit. The optical path inside the diagnostics room is checked to

insure the laser beam is centered on the mirrors and lens and the path

it traces during the scan is centered in the rectangular slits of the

spatial filters. The position of the laser beam inside the quartz torch

is calibrated to the visicorder output of the rotating potentiometer that
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is gear mounted to the scanning mechanism and has a small d.c. voltage

applied to it.

The diagnostics room equipment is warmed up and the plasma genera-

tor start-up procedure is initiated. The plasma start-up check list is

given in Appendix B and takes approximately forty minutes to complete.

The scanning monochromator is set to the desired continuum wavelength,

4315 1 for most runs, and the slit widths checked at 50 p. The high

voltage to the photomultiplier is increased to 1000 volts.

The plasma is ignited with a d.c. power supply operating at 40

amperes. The plasma generator can only be raised to approximately 4 kW

plate discharge power before ignition because the tank circuit is tuned

to the impedance of the argon plasma. The rf driver voltage is raised

until the tube screen current is near the value for automatic over-current

trip-off. An arc is drawn from the welding rod to the grounded water

cooled center electrode. The generator power is raised after ignition,

and the center electrode is then ungrounded.

The plasma is run for approximately five minutes at a plate dis-

charge power level of approximately 15 kW to allow the amplifier tube to

warm up and the quartz torch wall temperature to stabilize.

The plasma is then adjusted to the desired power level and the

d.c. plate voltage and current are recorded. The desired picoammeter

scale is determined and recorded while observing the center of the plasma.

The visicorder is then turned on and the plasma scanned. The current in

the work coil is observed on the cathode ray oscilloscope during the scan

and the current amplifier is set to scale and recorded. A Polaroid photo-

graph is taken of the sine wave with the scale factor and the run and scan
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numbers recorded on the back of the photograph.

The power levels required for the seeded plasma are higher than

for the pure argon plasma so the power must be raised during the switch-

over to a seeded plasma. The vacuum pump is turned on and a vacuum drawn

on the sample tank. The data scans of the seeded plasma are accomplished

in the same manner as those of the pure argon. The low power scans are

done first and the power raised for each run. At high power levels the

tube will discolor. The visicorder plot of each scan is checked and

asymmetry of the scan is used as an indication of tube discoloration and

thus ends the run.

Two aerosol samples are taken with the plasma running. The vacuum

of the sample tank is recorded and the solenoid valve that opens the tank

to the flow system is opened for approximately 10 seconds. The valve is

then closed and the tank vacuum recorded. A sample is then taken through

the remaining filter paper with the solenoid valve open for approximately

twenty seconds.

The filter papers are removed and weighed and the aerosol density

is calculated from the weight change of the filter papers and the volume

of argon drawn into the sample tank.

The visicorder output is cut up into the individual scans and each

scan is checked for symmetry. The run and scan number are recorded on

the visicorder output. The photographs of the current of the work coil

are measured and, based on the amplifier scale, the peak to peak and root

mean square currents are calculated and recorded.

The visicorder output with the recorded picoammeter scales serve
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as the raw data for the spatially observed intensity profile used in the

data analysis section that follows. The calibration of the observed in-

tensity is accomplished with a NBS standard tungsten strip lamp as de-

scribed in Chapter III. A typical visicorder trace is shown in Chapter

V.
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CHAPTER V

DATA ANALYSIS

Introduction

There is a wide range of diagnostic methods available to the

experimenter for measuring the electron temperature of a plasma. These

methods fall chiefly into three categories; probes, and the active and

passive uses of electromagnetic radiation. Probes, such as those de-

veloped by Tonks and Langmuir,50 are historically significant but not

practical for high density plasmas due to deterioration of the probes

and perturbations the probe may introduce. Thompson scattering of pho-

tons by electrons yields information on electron temperature and density

and ion temperature. The cross section for Thompson scattering is so

small that lasers with powers of hundreds of megawatts are required to

overcome the background due to the bremsstrahlung radiation. Passive

methods that involve observation of the emitted radiation include tech-

niques utilizing x-rays, microwaves, and radiation in the visible, infra-

red, and ultraviolet range. Relative intensities of spectral lines, line

shapes, or the intensity of continuum radiation may be employed. Meald

and Wharton51 give a good general tabulation of useful diagnostic tech-

niques and the temperature and density ranges over which the methods may

be utilized.

The electron temperatures (on the order of 6000-9000*K) and number
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densities (10 21-1022 m-3 ) of the argon plasma under consideration favor

spectroscopic techniques in the visible range. Equipment requirements

are minimized in the visible range and the emission intensity is high.

The temperature dependence of the absolute continuum emission was chosen

as the basis for electron temperature measurement in favor of several

other available techniques. The chief advantage of this method is the

high degree of dependence the continuum emission coefficient has on tem-

perature in this range, thus minimizing the resulting experimental error

in temperature determination. This technique does require an absolute

calibration of the system.

Methods involving the relative intensities of spectral lines require

only relative calibrations of the optical system but errors are introduced

in the form of experimentally determined atomic transition probabilities

and possible self absorption of lines. These transition probabilities are

readily available,52 '53'54 but the estimated error in some argon lines is

as high as 30%. This technique also requires that two or more spectral

lines at different wavelengths be observed simultaneously while spatially

scanning the plasma. A Boltzmann atomic plot of the natural log of the

relative intensities of many lines versus the upper level electron energy

associated with the transition that leads to each line reduces some of the

errors caused by the uncertainties in transition probabilities. The slope

of a straight line through the data points is a function of temperature.

The accuracy of this method increases with additional lines and with lines

spread over a wide range of electron upper level energies. Unfortunately,

the slope of the line is not highly temperature dependent and, for argon
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lines in the visible range a wide range in upper level energies requires

a wide range in the observed spectrum. A Boltzmann plot was made from

observations at the center of the plasma using lines between 4000 1 and

8000 1 with poor results.

The measurement of absolute line intensities also introduces experi-

mental problems. Either the line shape must be determined at many spatial

points with a high resolution spectrometer, or a slit width that introduces

the entire line radiation must be determined and the continuum background

taken into account. Self absorption at the line center may also be a

problem.

The continuum measurements were taken at the 4315 A wavelength and

checked by comparison with three runs at 5000 1. A photoelectric trace

of the argon spectrum at an average temperature of 7500 0K from 4200 A to

4400 1 with a tungsten seed density of 18 x 10-6 gm/cc is given in Figure

14 and shows the continuum at 4315 1 to be 15 1 from any argon or tungsten

spectral lines.

Analysis Equations

There are two independent but experimentally inseparable contribu-

tions to the continuum radiation emitted from a plasma in local thermo-

dynamic equilibrium (LTE). Bremsstrahlung (radiation from free-free

transitions) is the result of the Coulomb interaction of unbound electrons

with positive ions. The kinetic energy of the electrons is transformed

into radiation as the electrons are accelerated by the electric and mag-

netic fields present in the plasma. Free-bound (recombination) radiation

is due to the transition of free electrons into bound states; the reverse
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of photoionization.

Kramers5 5 first calculated the emission coefficient due to Brems-

strahlung for a Maxwellian electron velocity distribution and a plasma

containing only ions of equal charge. The emission coefficient expressed

as energy radiated per unit frequency is:

6 2 ff
16' e z N N. G

ff e 1 exp - h (59)

S 3c 2 (6Tmk)i T e kT)

with the quantities defined as follows:

e = electronic charge

z = level of ionization

N = number density of electrons

N. = number density of singly ionized atoms
1

G = free-free Gaunt factor

c = speed of light

m = rest mass of electron

k = Boltzmann constant

T = electron temperature

h = Planck's constant

v = frequency

The Gaunt factor corrects the semi-classical photoionization cross

section for hydrogen like systems to the exact values calculated through

wave mechanics. The Gaunt factors, averaged over the Maxwellian electron

56
velocity distribution, have been calculated by Karzas and Latter. The

values of the free-free Gaunt factors are of order I and are usually taken
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to be unity at the lower end of the visible spectrum, since the free-free

contribution to the continuum is small compared to the free-bound continuum.

The free-bound emission coefficient for a Maxwellian electron ve-

locity distribution involves a summation of emission coefficients over all

possible energy states to which a free electron may undergo transition.

Uns61d 5 7 demonstrated that the summation could be replaced by an integral

for frequencies that involved transitions to sufficiently dense levels.

Unsbld defines this cut-off frequency v in terms of the energy difference

between the ionization potential and the bound state for which higher

levels are spaced closely enough to allow integration. The emission co-

efficient for a one-electron system at frequencies below v is:

26 2
16rr e z N N.fb e i 1 exp/ hvlV Vg e = 3 2 (6mk) i - exp - k- (60)

9 v 3c2 (6mk)i T* TTjf

Biberman et al. 5 8 , 5 9 corrected the emission coefficient for other hydrogen-

like gases by introducing a correction factor g(T,v) or (T,X).

6 2
16rr e z N N. g (

v V e = 3 u 1 - exp (- Tf (T,v) (61)
3c3(6nmk) u

where gz,1 is the statistical weight of the ground state of the singly

ionized atom and uz is the partition function of the singly ionized atom

defined by:

E
n z,s

uz(T) = , s e kT (62)
s=l
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Bauder used a cut-off frequency of v = 9.5 x 10 sec - , corres-

ponding to a wavelength of X = 3160 1 in his work on high density d.c.

plasma arcs. SchlUter6 1,62 has calculated factors for argon which are

nearly temperature independent below 14,0000K.

The total continuum emission coefficient is then the sum of fb and
ff

S. Taking the free-free Gaunt factor to be unity and expressing the

emission coefficient as energy radiated per unit wavelength by multiplying

equations (59) and (61) by c/X2 we have:

6 2
16rr e z N N. g

k = , 2 )l 4 2(1 - exp - ') (X,T) + exp (63)3c (6mmk)* Ti X 2 z

where

hv hc
kT XkT

Evaluating the constants in equation (63) and using the data from

Drawin and Felenbok 34 for the statistical weight (gzl = 6) and partition

function (u z(T) = 5.519) for argon over the temperature range of interest,

equation (63) becomes (for L in watts 4):
ster. cm

N N
A > 3160 = 1.65 x 10- 19 Ne 1 6(T) (1 - e - ) + e-] (64)X2 \- L 5.519

where

Ne = electron number density, cm-3

N. = singly ionized number density, cm-31
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T = electron temperature, OK

X = continuum wavelength, k

The number density of the electrons is equal to that of the singly

ionized atoms below approximately 20,000 0K and can be calculated from the

Saha relation, equation (53) in Chapter II.

The neutral particle number density can be approximated from the

ideal gas law for slightly ionized argon by

P = N R T (65)

where R is the universal gas constant and P is the pressure which is very

nearly 1 atmosphere pressure in the plasma.

The number densities for argon neutrals, singly ionized atoms, and

electrons at one atmosphere are given in Figure 15 as a function of tem-

perature as calculated from equations (53) and (65). The continuum emis-

sion coefficient as a function of temperature given by equation (64) for

argon at 4300 1 and one atmosphere is plotted in Figure 16.

The assumption of local thermodynamic equilibrium (LTE) requires

that the population densities of the electrons be determined exclusively

by particle collisions and that all species have a Maxwellian velocity dis-

tribution at the same temperature. For bound levels, the distributions are

63
given by the Boltzmann and Saha equations. Griem presents a criterion

for LTE based on a collisional rate which is ten times larger than the

radiative transition rate. If we apply this validity criterion estimate to

the experimental conditions present in this work, we find that electron

22 -3densities of about 5 x 10 m are required which makes the LTE assumption
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64
suspect below about 11,0000K. Shumaker and Popenoe used a wall stabil-

ized arc for studies of equilibrium in argon and concluded that departures

22 -3
from LTE occur at electron densities below 5 x 10 m . Their data in-

cluded no correction for self-absorption of the lines studied. Olsen 65

used an argon arc burning freely between cooled metal electrodes to com-

pare temperatures determined from measured emission coefficients of three

species of plasma radiation and concluded that his atmospheric pressure

plasma was in LTE at a temperature of 10,000'K. He states that "Discrep-

ancies between temperatures determined from atom and ion line intensities

have been shown to have been caused by self-absorption of the atom line

in the outer layers of the plasma."

Work on rf argon plasmas by Scholz and Anderson5 indicates that an

rf plasma may be in LTE at much lower number densities than a d.c. arc

because of the larger plasma radii and lower axial and radial temperature

64
gradients present. Shumaker and Popenoe discussed the relevance of

plasma diameter and temperature gradients in their report on d.c. arc

studies.

By comparing an arc with a black body in which complete LTE
exists one can recognize three essential differences which may
cause departures from equilibrium. First, in the arc much of
the radiation escapes so that LTE will be achieved only if radi-
ative depopulation rates are negligible compared to rates of
collisional population and depopulation. Second, in the arc
steep temperature and number density gradients exist which may
generate diffusional fluxes of such magnitude that collisional
(and radiative) processes are unable to maintain equilibrium
distributions. And third, since electrons absorb energy from an
electric field much more rapidly than ions do the kinetic tem-
perature of the electron gas will be higher than that of the
heavy particle gas which obtains its energy then mainly by col-
lisions with the electrons. Since collisional processes will
be dominated by electron collisions it turns out that all of
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these effects should decrease rapidly in importance with
increasing electron density . . .. The importance of the
second effect should also depend upon arc channel diameter
and radial position in the arc.64

Scholz and Anderson 5 investigated LTE in an rf argon plasma operat-

ing at 4.2 MHZ at pressures of 0.01, 0.1, 0.5, and 1.0 atmosphere. They

used four emission lines and the continuum centered at three different

wavelengths to show that the central core of the rf argon plasma was in

LTE at 1.0 and 0.5 atm and very nearly so at 0.1 atm. They state that

this

equilibrium is due in part to the existence of low (i.e.
VTI 5300K/cm) axial and radial temperature gradients. At
these pressures the plasma is in an apparent state of LTE and
the thermal limit extends down to the ground state. The LTE
electron number density criterion given by e uation (1) [Griem]
appears to be conservative for this plasma.

1

The problem of relating the radial emission coefficient to the ob-

served intensity profile is simply a geometric one for optically thin

plasmas and the standard Abel inversion technique may be used. The prob-

lem is more difficult when reabsorption inside the plasma cannot be ne-

60
glected. Griem suggested a self-consistent iterative procedure for ob-

taining emission coefficients in the case of moderate optical depths.

The absorption coefficient is defined by:

K(X,T) - e(,T) (66)B(X,T)

where B(X,T) is the blackbody radiation.

The plasma is assumed axially symmetric and divided into N zones

of radii R/N, 2R/N, . .. , and R as indicated in Figure 17. The tempera-
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ture, emission coefficient, and absorption coefficient are considered

constant in a given zone. The reduction in intensity of radiation Io

after passing through a zone of constant K(X,T)and distance x is given

by:

I = I e-Kx (67)

If that zone is also emitting radiation with the same emission coefficient

throughout that zone, the observed intensity will be:

-Kx -K (x-) d (68)I =I0 e +j e d (68)
0

or

I = e-Kx [- e-Kx (69)
o K

The intensity of the radiation observed at a given spatial position,

yn, as shown in Figure 17, is the sum of the radiation emitted from each

zone minus the radiation attenuated by the zones between each emitting

zone and the surface.

A computer program was written to relate the emission coefficient,

absorption coefficient, and temperature of each zone to the observed in-

tensity of the radiation emitted from the surface of the plasma.

Computer Program - MAD

The computer program, MAD (Modified Abel Diagnostic code), utilizes

the spatially observed surface radiation intensity as raw data fed in at N

discrete points according to Figure 17. The program calculates the radi-
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ally dependent temperature, emission coefficient, and absorption coeffi-

cient for a plasma that is not optically thin. A typical visicorder

trace, as shown in Figure 18, is reduced to give values of the observed

radiation in watts/sec m3 based on the output current of the photomulti-

plier tube and the calibrated sensitivity of the system. The radius of

the plasma is found from the radiation intensity trace and the spatial

position trace. The radius is assumed to be that position where the in-

tensity drops to zero.

The data fed in are first curve fitted with a third order spline

fit subroutine and interpolated to give observed intensity values for N

zones. The program then calculates values of x(n,i), which is the thick-

ness of zone i when observed at chordal position yn, shown in Figure 17.

This distance is

S i_1\2  n
x(n,i) = R 1 - i) - 1 - 2 - x(n,j) (70)

j=i+l

During the first iteration, the emission coefficients are calcu-

lated for each zone from the observed intensity I(yn) and the values of

x(n,i), assuming the plasma to be optically thin, i.e., the absorption

coefficient K is set equal to zero for all zones. Starting from zone one

and working toward the center, the emission coefficient of each zone is

calculated using the emission coefficients of previously calculated zones

from:

n

I(yn) = 2 e(i) x(n,i) (71)
i=l
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or

n-i

e(n) = [I() - 2 e(i) x(n,i) 2x(n,n)1 (72)
i=l

where e(i) for i < n have been calculated previously.

The temperature and number density for each zone can be calculated

from the emission coefficient and equations (53), (64), and (65). Values

for the number density are interpolated from data given by Olsen's GASCOMP

program using an N = aT5 / 4 expb / T dependence between values 10000K apart.

The a and b coefficients are calculated for each 1000 0 K interval and the

error is less than one percent over the temperature range of 4000-14,0000K.

The correct temperature and number density for a given emission coeffici-

ent are then arrived at by binary search iterative procedure. The first

approximation of the absorption coefficient is calculated by dividing the

emission coefficient by the blackbody radiation at the temperature of the

given zone as indicated by equation (66).

After the first iteration, a new set of emission coefficients is

calculated based on the observed intensity data and the first approxima-

tion to the absorption coefficients. Equation (71) is modified to include

the absorption coefficients:

n i-i

I(y n)= iI - exp(- K(i) x(n,i)] {exp ( -K(j) x(n,j)) (73)

=1 j=l

n n

+ exp -K(j) x(n,j) + -K(j) x(n,j))}}
j=l j=i+l
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This calculation is best accomplished on the computer by defining

a set of optical arrays based on equations (67) and (69). Let e(i)A(n,i)

represent the emission from a zone of length x(n,i) and constant 
emission

coefficient e(i) and absorption coefficient K(i). From equation (69)

A(n,i) - [1) - exp (-K(i) x(n,i))] (74)

Defining B(n,i) as:

B(n,i) = -K(i) x(n,i) (75)

then exp B(n,i) represents the attenuation of radiant energy passing

through a zone of length x(n,i) according to equation (67).

Arrays C(n,i) and D(n,i) are defined in terms of sums of B(n,i)

such that exp C(n,i) represents the total attenuating power of all of the

zones between the zone emitting radiation e(i)A(n,i) and the surface for

zones on the near side of the plasma, and exp D(n,i) represents the equiv-

alent for zones on the far side of the plasma:

i-I

C(n,i) = B(n,j) (76)

j=l

n n

D(n,i) = B(n,j) + x B(n,j) (77)

j=1 j=i+l



66

Now the radiation emitted from zone i and along chordal position

n is

I = c(i)A(n,i) (78)

The radiation from this zone reaching the surface is then

I = e(i)A(n,i) exp (C(n,i)) (79)

for zones on the near side of the plasma and

I = e(i)A(n,i) exp (D(n,i)) (80)

for zones on the far side of the plasma. Equation (73) then reduces to:

n

I(y) = e(i)A(n,i) [exp (C(n,i) + exp (D(n,i))] (81)

i=l

The emission coefficients can then be calculated starting from zone 1 and

proceeding inward by:

n-l

(yn) - e(i)A(n,i) [exp (C(n,i)) + exp (D(n,i))]

E(n) = (82)

A(n,n) [exp (C(n,n)) + exp (D(n,n))]

where e(i) for i < n have been calculated previously.

These new emission coefficients are used to calculate new tempera-

tures and absorption coefficients. The iteration terminates when the
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changes in emission coefficients, absorption coefficients, and temperatures

for all zones are less than one percent of the values in the previous

iteration.

This analysis provides a self-consistent radial distribution of

temperature, emission coefficient, and absorption coefficient for the dis-

tribution of the observed intensity for moderately self-absorbing plasmas.

A listing of the program is given in Appendix C.

Error Analysis

Chordal Average Temperature

The experimental errors associated with the temperature measurements

are small compared with the experimental magnetic field intensity measure-

ments because of the high temperature dependence of the emission coeffi-

cient. If we define a chordal average temperature as the equally weighted

sum of the temperature of each zone divided by the number of zones, and the

chordal average emission coefficient as the value of the emission coeffi-

cient determined by that temperature, the chordal average emission coef-

ficient multiplied by the plasma diameter will yield the value of the

emitted intensity, I(Yc), along a chord through the center of the plasma.

It is estimated that the photoelectric trace of the observed inten-

sity can be read within 10% and the sensitivity of the system as shown in

Figure 13 is known within 15% giving a total uncertainty in the observed

intensity of 25%. The absorption coefficient is neglected in estimating

the error in measured chordal average temperatures since the theory and

experiment show the plasma is optically thin. The uncertainty in observed

intensity results in an uncertainty in the average emission coefficient
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of the same value since

S=I(yc)/R (83)

so

A = ic = AI/R (84)

c

and

AF- AIc Ac
(85)

T Re Ic

The uncertainty in the chordal average temperature can be esti-

mated from the observed intensity error by

T "FT
AT C (86)
T T TI

c

The values of F and - as functions of temperature can be obtained

from equation (64) or estimated from Figure 16. Over the temperature

range of 70000K < T < 9500'K, a 25% uncertainty in observed intensity re-

sults in a chordal average temperature uncertainty of less than 2%. The

uncertainty in experimentally measured chordal average temperatures is

much less than that of the experimentally measured magnetic field inten-

sity. Thus, only the error bars associated with the magnetic field inten-

sity measurements are shown in the results section.

Magnetic Field Intensity

The Tektronix high frequency current probe, amplifier, and step

down transformer are calibrated to within 3%. It is estimated that the
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magnetic field intensity can be calculated from 
the coil current to within

an accuracy of 2% based on the experimental measurements reported in Ap-

pendix A. The current recorded from the photographs of the 
trace on the

oscilloscope is estimated to be correct within 10%, giving 
a total uncer-

tainty in the reported magnetic field intensity of 15%.

Tungsten Aerosol Density

The tungsten aerosol density was measured twice during each experi-

mental run and the uncertainty in the reported density is estimated to 
be

20%, based on the average discrepancies in measured values.
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CHAPTER VI

RESULTS

Introduction

A total of 59 experimental runs resulting in temperature profiles

were made. Approximately 50 more runs were made that did not yield re-

sults due to equipment failure. The failure was most often in the plasma

generating equipment.

The first 27 runs were made without measurement of the coil current

in order to develop a degree of confidence in the plasma generator and the

diagnostics instrumentation. Three runs were made using the continuum at

5000 1 and at 4315 1 to ensure that the resulting temperature profiles

were not dependent on the continuum wavelength chosen. The plasma spec-

trum was recorded from 3500-8000 1 and analyzed to ensure that no unknown

contaminants were in the plasma. Twelve of these first 27 runs included

various concentrations of tungsten aerosols ranging in number density

ratios Nw/NAr from 2.5 x 10 3 to 3.7 x 102 to ensure that the effect of

tungsten could be measured and to gain experience in operating the plasma

generator with a seeded plasma. High speed, 16 mm motion pictures of the

plasma were made at 1000 frames/sec to check for instabilities in the

plasma that might not be observable to the naked eye. A small pulsation

of the plasma at a frequency of 60 Hz could be detected which caused a

variation in the plasma radius of about 10%. This resulted from the 60 Hz
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ripple in the coil current from the rectifier circuit.

There were 32 runs made with temperature profiles recorded at

various power levels. The coil current was measured along with the plate

dissipation power. Eleven of these runs were made with tungsten to argon

number density ratios of 4.3 x 10
- 3 , 6.1 x 10- 3 , and 3.6 x 10-2

Experimental Results

Argon

The observed intensity for four representative runs at magnetic

field intensities of 33.1, 46.0, 55.2, and 77.2 amp-turns/cm are illus-

trated in Figure 19. Figure 20 is a plot of the resulting radial distri-

butions of the calculated emission coefficients. The absorption coeffi-

cients were also calculated in the analysis and ranged from about 10
-6

-1 -5 -1
cm for the low power case to 2 x 10 cm for the highest power case,

indicating that the plasma was optically thin.

The temperature profiles that result from the radial emission co-

efficients are presented in Figure 21. While the observed intensity

ranged over an order of magnitude for the various power levels, the re-

sulting temperature profiles varied only about 10% from the lowest power

case to the highest. This is due to the very high temperature dependence

of the emission coefficient.

The four temperature profiles presented in Figure 21 are compared

with the theoretical analyses in Figure 22. The solid line indicates

the experimental results; the dotted and dashed lines represent the nu-

merical results described in Chapter II. The plasma radius was reduced

in one case to the experimentally observed radius and the thermal con-
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ductivity increased as explained later. The off-center peak temperature

of the numerical analysis is much more pronounced than the results of the

experiment. The off-center maximum of the temperature profile is a result

of the skin heating by the electromagnetic field and radiation cooling of

the plasma. When radiation is neglected, the numerical analysis yields a

temperature profile with the maximum temperature occurring at the center

of the plasma. The experimental results also have an off-center tempera-

ture peak but the difference between the center temperature and the peak

temperature is much less than predicted by theory. This is in keeping

with the results of other experimenters as shown in Chapter I. The most

probable reason for this is the complex turbulent flow pattern present

in the experimental plasma that is not accounted for in the theoretical

analysis. This turbulent mixing flow will tend to flatten out the tem-

perature profile. Neglecting axial convection in the numerical analyses

may also account for the difference since the axial temperature gradient

will be highest at the radial position where the peak temperature occurs,

tending to flatten the temperature profile. The magnetic field intensity

is increasing at the axial point, where the plasma was observed, as shown

in Figure 33 of Appendix A, and the peak temperature increases with in-

creasing magnetic field intensity. An approximate analysis was made with

an assumed axial temperature gradient calculated from the derivative of the

applied magnetic field intensity and the change in the radially dependent

temperature with applied magnetic field intensity as predicted by the nu-

merical analysis. This analysis shows that the correction term is an order

of magnitude lower than the radiation term. This is not in agreement with
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the theoretical predictions of Miller and Ayen.21 Their two-dimensional

analysis of temperature profiles in a torch with an assumed flat axial

flow shows a definite flattening of the temperature profiles at the begin-

ning of the energy addition region and a gradual increasing of the off-

center maximum temperature at increasing axial positions.

The effect of the turbulence is to increase the effective thermal

conductivity. The numerical analysis shows a marked decrease in magnetic

field intensity near the tube wall while it appears that the vortex flow

decreases the radius of the plasma, thus delaying the drop in magnetic

field values. The numerical analysis was run with the thermal conductivity

values doubled and the radius reduced to match the experimentally observed

radius. The results are shown in Figure 22. The profile shapes are in

better agreement with the experimentally observed profiles, indicating

that the turbulent flow may indeed cause a significant increase in the

effective thermal conductivity due to mass convection.

Additional insights can be gained if the chordal average temperatures

are plotted as functions of applied magnetic field strengths as shown in

Figure 23. The chordal average of the numerical temperature profiles re-

mains in good agreement with the experimental chordal average throughout

most of the range of magnetic field intensities. The uncertainty in the

numerical solution due to the uncertainty in the electrical conductivity

is reflected by the cross hatching.

The analytical approximation of Roninskii et al.6 predicts tempera-

tures several thousand degrees higher than does the numerical analysis.

This is due to the radiation term which is neglected. At lower tempera-
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tures, radiation plays a less important role, and the two techniques con-

verge. If the radiation term is set equal to zero in the numerical tech-

nique, the two solutions are nearly identical. In this case the maximum

temperature occurs in the center for both techniques.

Figure 24 is a plot of the total linear power input and the power

radiated as a function of magnetic field intensity predicted by the nu-

merical analysis. The radiated power represents 50% of the total power

input for a magnetic field strength of 75 amp-turns/cm and drops to 35%

for a field strength of 30 am-turns/cm.

The numerical analysis predicts that a plasma can be sustained at

magnetic field strengths as low as 15 amp-turns/cm, but experimentally the

limit was determined to be about 30 amp-turns/cm. This can be seen in Fig-

ure 23, where the experimental points tend to diverge from theory at about

30 amp-turns/cm. This can also be attributed to flow. The plasma is

literally "blown out" at low power levels by the flow.

Argon Seeded with Tungsten

The argon plasma was seeded with tungsten at number density ratios

of 4.3 x 10- 3 , 6.1 x 10-3 , and 3.6 x 10-2. The greatest effect on the

temperature profiles was with an Nw/NAr of 6.1 x 10-3. This is most likely

because the collision cross section of tungsten can no longer be neglected

at the higher number densities of tungsten. Temperature profiles for

three different magnetic field strengths and a tungsten number density

ratio of 6.1 x 10-3 are shown in Figure 25. The temperatures are reduced

approximately 1000 0K below the pure argon case. Figure 26 is a plot of

these same three profiles compared with the results of the numerical
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analysis. The transport properties were altered in the numerical analysis

as discussed in Chapter II. Figure 27 is a plot of the chordal average

temperatures of the plasma as a function of magnetic field strength for

the various tungsten partial pressures. The temperatures decrease with

the addition of seed as predicted by the theoretical analysis with gener-

ally good agreement until the seed reaches an Nw I/NAr of 3.6 x 10-2 . The

experimental temperatures begin to rise for higher seed concentrations

while the temperature calculated from the theory continues to decrease.

This is because the theory neglects electron collisions with tungsten in

the calculation of electrical conductivity.

Parametric Study of Numerical Analysis

The uncertainties in the transport properties of both seeded and

unseeded argon and the experimental parameters that can be varied make it

worthwhile to examine the effect the data input to the numerical analysis

has on the predicted temperature profiles. Figures 28, 29, 30, 31, and

32 each shows the temperature profiles at four different magnetic field

intensities with the electrical conductivity, thermal conductivity, fre-

quency, radius, and radial mass flow rate varied over the indicated ranges.

The effect of the electrical conductivity can be seen in Figure 28.

The values were varied by translating the empirical curve with respect to

temperature by 1000*K to either side of the values normally used in the

analysis. This effectively bounds the available data. The electrical

conductivity terms enter the governing equations through both the energy

balance equation and the equation for the induced electric field. The

induced electric field is lowered for higher values of electrical conduc-
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tivity. This reduces the power input term for the energy balance equa-

tion, E0 2, since the increase in a is more than offset by the decrease

in E . The reduction in the power input term causes a uniform reduction

in temperature, though the temperature values do not seem to be very

sensitive to variations in the electrical conductivity values.

The temperature profiles are not very sensitive to the values

chosen for the thermal conductivity either. Figure 29 shows the results

of varying the values of X by 25%. An increase in thermal conductivity

causes the temperature profile to flatten as might be expected, but does

not lower the average temperature in spite of the fact that more energy

is transferred through the torch wall. This is most likely because the

reduction in the maximum hot spot temperature lowers the total radiated

energy more than the temperature increase in the central region increases

it.

The frequency of the applied electromagnetic field-effects its pene-

trating ability. At higher frequencies, the power input is over a nar-

rower band near the tube wall, resulting in a lower center region temper-

ature but a higher temperature near the wall. This effect can be seen

in Figure 30.

The results of variations in the plasma radius are not so easy to

predict. An increase in radius requires a larger net power input to keep

the same values of the applied magnetic field intensity at the plasma

radius. The surface area for heat transfer to the wall also increases.

The hot spot temperature remains approximately the same as seen in Figure

31, though the central temperatures drop with increasing radius since the
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induced electric field decreases as the penetration distance increases.

A study of the effect of a radial mass flow was made since there

is some experimental evidence22 that indicates such a flow may exist.

The results are shown in Figure 32. The hot spot temperature is not

affected in magnitude or position. The center region temperatures are

increased with an inward flow toward a sink in the center.

The most surprising result of these studies is the very low sen-

sitivity of the temperature profiles to any of the inputs, including

the magnetic field intensity.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The one-dimensional system of equations made up of the energy

balance equation, Maxwell's equations, and Ohm's law are adequate to

quantitatively describe the chordal average temperature inside an rf

plasma over a wide range of magnetic flux intensities but do not describe

the profile shape as well as might be desired. This is a possible result

of the complex turbulent flow patterns inside the torch which are not ac-

counted for in the analysis. There does not appear to be any reasonable

solution at present to this problem, though experimental and theoretical

temperature profiles would most certainly be in better agreement for ex-

perimental plasmas designed to minimize this effect. An effort was made

to simulate the effects of turbulence by increasing the thermal conduc-

tivity values and using the experimentally observed radius in place of

the torch radius in the numerical analysis. Agreement with experimentally

observed temperature profiles was improved.

The neglect of the radiation term in the energy balance equation

is not justified. The results of the numerical treatment and experiment

show that the temperatures encountered at the magnetic flux intensities

necessary to sustain a plasma are too high to neglect the effect of radia-

tion. The closed-form analytical approximations that neglect radiation

do yield interesting insights into the problem, most notably with regard
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to the degree of coupling between the electrical and thermal conductivi-

ties and the resulting temperature predictions, but do not accurately

predict the maximum temperatures encountered or the temperature profiles.

The numerical solutions are not highly sensitive to any of the

experimentally controllable inputs or to the electrical or thermal con-

ductivity values chosen. This lack of sensitivity was experimentally ob-

served with respect to the magnetic flux intensity and conductivity values

but equipment limitations prevented variations of the torch radius or rf

driving frequency. The addition of tungsten seed significantly increased

the electrical and thermal conductivities of the argon but lowered the

temperatures of the plasma, as predicted by theory, by only about 1000
0 K

for corresponding magnetic field intensities.

Recommendations

An experimental arrangement that minimizes the effect of turbulent

flow would form a better basis for comparison with theory. Extending the

experimental measurements to two dimensions would be a valuable addition

to those numerical techniques which attempt to take into account the

axial variation of the energy addition region. Utilizing gases with

marked differences in transport properties would help establish the

ability of the theory to handle the problem. A more productive effort

might be made in the direction of simplifying the calculations necessary

to determine the chordal average temperatures resulting from the many

variables open to the experimenter. A modification of the existing closed

form solutions that takes into account radiation would be a valuable ad-
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dition. A detailed comparison with existing numerical solutions over

a wide range of cases would lend credence to the results of this modified

closed form solution.
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APPENDIX A

COIL AND MAGNETIC FLUX GEOMETRY

The magnetic field intensity inside the work coil is a function of

the work coil geometry and is proportional to the current in the work

coil. Figure 33 is a full scale drawing of a cross section of the work

coil and torch with the plane of observation noted.

The magnetic field intensity at any point z along the axis can be

calculated from the work coil current, I, by

2
H = E al (87)

i 2(a2 + xi)

where a is the work coil radius and xi is the axial distance from point z

to each coil position, as noted in Figure 33.

Defining

2

y() =E 2 (88)
i 2(a + xi)

Then

H(z) = I y(z) (89)

The calculated values of y(z) are shown in Figure 33. These values

were experimentally verified by passing a known d.c. current through the

coil and measuring the magnetic fieldintensity inside the coil with a
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Figure 33. Work Coil Geometry and Magnetic Field Intensity Distribution
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Bell Model 640 Gaussmeter. Figure 34 is a plot of experimentally meas-

ured points taken at the observation plane used for the plasma tempera-

ture profiles and a line corresponding to the theoretically calculated

value of Y = .52 at that point. The agreement appears excellent.
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Figure 34. Experimental Measurements of Magnetic Field Intensity in Work Coil
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APPENDIX B

PLASMA START-UP CHECK LIST

Pre-Start

Pad Input Switch off.

Arc Welder off

Main Water off

Capacitor Drain Switch down

New Filter Papers check

Spectrometer 6328

Torch Alignment check

Argon Supply check

Bypass Flow clean

Torch Leaks check

Visicorder Spatial Alignment record

Spectrometer 4315 1

Spatial Scan centered

Ground Switch on

Start

Capacitor Drain Switch up

Pad Input Switch on

Arc Welding Rod clear

Coil Cooling Water on

Interlock System all off (left)
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Pad Input Starter on

Rectifier Switches on (right to left)

Plate Voltage Delay on

Screen Voltage Control full c.c.w.

Grid Voltage Control full c.c.w.

Grid and Screen Power Supply Circuit on
Breakers

RF Driver full c.c.w.

Filament Voltage full c.c.w.

Tube Blower Circuit Breaker on

Aux. Blowers and d.c. Arc Circuit Breakers on

Filament Circuit Breaker on

1 kW Amp. Circuit Breaker on

1 4
RF Driver--four switches on 2 3

Grid Voltage 200 V

Screen Voltage 200 V

Filament Voltage 2 V

Plate Voltage lower until zero light on

5 min Plate High Voltage on

Plate Voltage 2500 V

Grid Voltage 300 V

Screen Voltage 300 V

Filament Voltage 3.5 V

5 min Grid Voltage 400 V

Screen Voltage 400 V

Filament Voltage 5 V
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1 -Grid Voltage 500 V
5 min

Screen Voltage 700 V

[Filament Voltage 7 V

Cascade Interlock Lights check on

Ready Light check on

5 min [Filament Voltage 9.7 V

Switching Network

Turnoff on (right)

Grid on (right)

Plate on (right)

Screen on (right)

RF Driver c.w. until screen current noted,
then full c.c.w.

Plate Voltage 5000 V

RF Driver c.w. until screen current noted,
then full c.c.w.

Plate Voltage 7500 V

RF Driver c.w. until screen current noted,
then full c.c.w.

Argon Pressure 40 psi

Argon Bypass Flow Rate 3"

Torch Blowers on

Arc Welder on

RF Driver c.w. until screen current 150 ma

Ignition

Draw Arc with Welding Rod to
Water Cooled Center Electrode
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Immediately after Ignition

Arc Welder off

RF Driver c.w. until screen current 100 ma

Ground Switch off

Duct in Place

Warm up Torch Slowly

Normal Shut Down

Simultaneously

Switching Network Turnoff off (left)

RF Driver full c.c.w.

Immediately

Switching Network Screen off (left)

Plate off (left)

Grid off (left)

Filament off (left)

Plate Voltage 2000 V

Filament 0 V

Screen Voltage 0 V

Grid Voltage 0 V

Plate High Voltage off

Delay off

Rectifier Switches off (left to right)

Pad Input Starter stop

Argon Flow off

Grid and Screen Supply Circuit Breakers off
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Filament Circuit Breaker off

4 1
RF Driver--four switches off 3 2

3 2

1 kW Amplifier Circuit Breaker off

Torch Blowers off

Water 1/2 flow

15 Min

Aux. Blowers and d.c. Arc Circuit Blowers off

Tube Blower Circuit Breaker off

Water off

Pad Input Switch off

Main Water off

Capacitor Drain off

Unintentional Plasma Shut Down

Simultaneously

Switching Network Turnoff off (left)

RF Driver full c.c.w.

Immediately

Switching Network Screen off (left)

Plate off (left)

Grid off (left)

Filament off (left)

Re-Start

Plate Voltage 3000 V

Overcurrent Trips reset

Filament 9.7 V
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Ground Switch on

Switching Network:

Turnoff on (right)

Grid on (right)

Plate on (right)

Screen on (right)

RF Driver c.w. until screen current noted,
then full c.c.w.

Plate Voltage 5000 V

RF Driver c.w. until screen current noted,
then full c.c.w.

Plate Voltage 7500 V

RF Driver c.w. until screen current noted,
then full c.c.w.

Arc Welder on

RF Driver c.w. until screen current 150 ma

Follow Normal Ignition Procedure
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Figure 35. Plasma Generating Facility Lay-Out
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APPENDIX C

MODIFIED ABEL INVERSION COMPUTER PROGRAM



IrTEG&R CODEY,Y1
I:4TEGER COUNT
REAL IC,KAPPA
REAL KOLD
REAL NE
DIMENSION IC(50),X(505I),EC(SO),KAPPA(50)tB(50)
DITENSION T(50)
DIMENSION OIC(26),RE(),AC(26),BC(26),CC(26),DC(26) CCC(26)
DIENSION A(50,51) ,X(90O51),C(50,51),D(5 0 ,51)

DIMENSION TOLD(50)#KOLD(50)PECO(50)
DIMENSION XU()'YUTf ),YNR(26),OICN('26)

C READ IN DATA
C FIRST CARD CONTAINS RUN CODE,PLASMA RADIUS(CM),NUMBER OF ZONES

C USED IN ANALYSIS (BETWEEN 4 AND 50), WAVELENGTH (ANGSTROMS)p NUMBER OF

C DATA POINTS FED IN (BETWEEN 4 AND 25)
C FORMATED (13,F10.2pI10,F10.1,I10)
C IF THIS CARD IS BLANK PROGRAM ASSUMES END OF DATA SETS

99 READ(5,800) CODE,R,NWLPNDP
1N=40
IF(CODE.EQ.O) GO TO 920
WRITE(6,8o1)CODEpRpNWLPNDP
WRITE(1,p00)CODERpNrWL#NDP

C" NEXT READ iN 08SERVED INTENS!TY(WATTS/CM**3-SR) FOR EACH ZONE.THE

C OUTSIDE ZONE IS Y=l .ONE DATA POINT ON EACH CARD WITH THE ZONE NUMBER

C AND THE INTENSITY AS(I3,1PE1R.3)
C THE PROGRFM ASSUMES THE INTENSITY IS
C ZERO AT ThE RADIUS OF THE PLASMA

DO 50 Y=1,N
TOLD(Y)=O.O
KOLD(Y)=0.

50 CONTINUE
KrNOT=0
C 0 u NT = tCOUNT 0
WRI E( ,86 2)
DO 100 K=1,DP



RE AD( 5: r 0 3) Y P IC ( Y
WRlTE(6v,o,4)YFoIC (Y)
WRITE(1,816) YOIC(Y

100 C Of-T I NUE
DO 101 11,!IHDP

C = ND P

OlCN(I):OIC (NDP-i.+l)
101 CONTINUIE

YNR(N2IP+1)=R
YNR(NDP+2)=R*(I+(l1/C2))
0O1CN (;47 *P*1)=0.0
OlCN(!NDP+2)=0.Q
CALL COEn7FFVNR,DIONtNOP+-2,l,0e2,0,REtPQ9ACDBCPCC9DCPCCCPXUYJ)

DO 102 Y=4,N
C 1N
C2=Y
C3=R*( (Cl-C2)/(CV j- -

--- CLLNTRP4(C3CM l
IC(y)=C4

WRITE(lSr814) YC3fIC(Y)

102- CONTINI.E
C CALCULATE '3E0.UETRlC MATRIX ARRAY

X(NtN+1)=.,0
LO 105 K=Nol-1
DO 105 I=K.epu1
X(KpF(+t)=0.0
Z2=ooo
IF(I.E&'QK) GO TO 104

DO 103 Jil#K
L2=Z2+X(KPJ)

0-
00



103 COAJT I 'I

ZZ=K
ZYZ='j
X(K1)=(R)*C(tIYY/YZ)l*2-(l-ZZ/ZY7.)**2 )**O.5-Z2

105 C O'.T 17-"E
0 CALCULA'TE EmAiSsION COFFFICIENTS -ASSU4AE PLASMA OPTICALLY THIN

DO 250 K=2eN
SUM=0*00
J1=K-.
DO 210 J=itJl
StJ=SJ"+X(KPJ) *EC(J) *2.0~

210 C 0 N T I~
-EC(K)=(IC(K)-SUA)/(2*X(KPK))
IF(EC(K).LT.O.0) 'E-C(K)=0.0)

250 CONTINUE
C CALCULATE TEMPERATURE

DO 350 K=NP1e-1
-.....- TH=10999',o

GTL=4.031.0
310 GT=(GT:-+GTL)/(2.0)

NE=ARAD (GOT)
SE,=ECEO(GTrNE,WL)
IF(GEC.GT.EC(K)) GTH=GT
IF(GEk',LE.EC(K)) GTL=Gr
IF((GTH-GrL).GT.05.0)GO To 310

350 CONTIAUZ
C CALCULATE OPACITY

400 COIIIE
00 LI25 K=Nplt-1



L4Z5 CONTINUJiE
500 CONTINUE

ij=o
-J =0

C3UNT=.OUqT+t
DO 525 Y~iN

PCENO=(KAPPA(Y)-OLD(Y))/(KAPPA(Y))
PCENE=(EC(Y)_ECOCY))/(FC(Y))

IF (PCENT. GE.0. C05JJ=l

IF(PCENE.GE.O.005)J=1
TOLD (Y) =T(Y)
KOLD(Y)=KAPPA'Y)
Eco(Y)EC -(Y)

525 CONTIr'JE
V (J*.).O) GO TO 9 00
IF(JJ.;E:Qto) Go TO 900
I F(C0UAT. EJQ,2 0) GO'TO 900............

*C -CALCULATE OPTICAL ARRAYS
600 :CONTINUE

KONT0NT~1.
DO.620 yiltt
DO 62L1 I.=I,Y
A(y,I)(.EXP(-KAPPA(I)*X(YeI) ))/(KAPpA(I))
BX(.yI)=-KAPPA(I)*X(YpI)
C(Yt, O,
D(Yp 1)=o.o

62f- CONTINJE

DO 650 Y=?vN

IF(I.-Qt) GO TO 630



DO 625 L-ITIl
SU=SU'+-X (Y , L)

625 CONTINUE
C(Y, I)=SUI

630 CONTIN UE
SUi:0. J
DO 635 L=1'Y
SUM=SJ'M+BX ( YL)

635 CCNTINUJE
IF(I.EQ.y) GO TO 641

DO 640 L=I1,Y
. SUM=SUJ+BX(Y, L)

640 CONTI NLIE
641 D(Y,I)=sUM
650 CONTINUE

C CALCULATE NEW EMMISSION COEFFICIENTS
700 CONTIJNUE

.C ( 1 ) = (IC ( 1 ),/( A(IT1TA-tI, I)' EXP t aX (Ii ) )x I.

IF(EC(1).LT.0.O) EC(1)=O,0
00DO 747 Y=2,N
SUM=3 '0
YI=Y-I
00 737 L=I,Y1
SUM:SU,'-+(rEC(L)A(YL))*(EXP(D(YeL))+EXP(C( Y tL)))

737 CONTINUE
EC(Y)=(IC(Y)-SUM)/(A(Y,Y)*(EXP(D(YY))+EXP(C(YY))))

IF(EC(Y),LT,O,O) EC(Y)=OO . --.

747 CONTINUE
GO TO 300

800 FORMAT(I3, 10,2PI10F10*.1, I10)
801 FORMAT(1H1,20X,'ANALYSIS PROGRAM FOR ARGON PLASMA',///,

1 30X,'RUN CODE IS',e4,/,
2 30X,'PLASMA RADIUS IS',F6.3P' ,'CM. ,/# .

I



3 30X,,TNF- AREvrI3v1XpfZONES US;ED IN THE ANALYSISft/v
'4 ~ 3XTHE CONTINUUM IS f9SERVED ATveF7,lI1XvfANGSTROMS'p
5 /p 30XTHERE WPERE'P141XPIDATA POINTSQ)

802 F0RMAT(1Hjp2X,f9OSERVE0 JNTENSITY',///v15XvlZONEI,1OXp
1 'V'JTENSITY (WATTS/SR-CMj**+) './)

803 F0RMAf(l3P1PEIB.3)
804L FC;RMAT(15'AI~r10XpPE9,3)
809 FORMAT(IH1,30X, CALCULATED PLASMA PARAMETERSt,,/,

11O0Xe'ZONEfv5XpfO5SERVED INTENSITY'v5XPIEMISSION COEFFICIENT'P
2 5X''TEM.PERATURE9,5XP'ASSORPTION COEFFICIENTIP5X0tBLACK BODY RAD9

3p/tl~xp (WATTS/CM**3-SR) 'p5Xf'(WATTS/CM**4-SR) I
5Xe ' )EG.KE-LVIN 9 ,5XP' ufM-4,'4tip f (WATTSf/CM**3-SR) 9 v11)

810 FORMATf(1OX,!3,5XPtPE14.3,7XPtPEt7,3p9XPOPF9.1,10X,
1 lPrE12.3,loXtlPE12.3p/)

813 FOfMAr(lOXWZONE'eLOX,'R',20,'IC',///)
81L4 F0RMA1*(loXF13#F14,3pF20*3)
815 FORmATr(I4,3F20,5)
316-FORM-ATf13pFIo# l) - ----
817 FORMAT (2)-
900 CONTINUE

C WRITE OUT DATA
WRITE(6pBog)
00 910 Y=No1,-1
WRITE(GP1 Bl0) YtIC*(Y) pEC(Y)-pT(Y'),KAPPA(Y-)iB(Y)-
WRITE(iP1 85) yt EC(Y) .T(Y) ,KAPPA(Y)

910 C ON TI NU0E
WRITE(6#617) KONT
GO TO 99

920 CONTINUEI
-END~



FUNCTION GAUNT(WL)
C THIS FUNCTION CALCULATES THE GAUjNT

4C FACTOR AS A FUNCTION OF WAVELENGTH
C (WL-ANGSTROMS) EMPERICALLY BASED ON
C DATA 3Y DIETER SCHLUTER--Z,ASTROPHYSIK
C VOL 61 PAGE 67-1965-PANGE 3500-6500 A

IF((WL.LT.3500.).OR.(wL.GT.6500.)) GO TO 3
IF(wJL.LT,4800,) GO TO 2
IF(WL.LT,4900,) GO TO I
GAUNT(o0.5/600,)*(WL-4900.)+1,5

RETURN
1 GAUiNT=(0.4/100.)*(4900, -wL)+1.5

RETURI

2 GAUNT=(0.75/130 0.)*(WL-3500,)+1.15
RETUR,

3 WRITE(6,4) WL
4 FORMAT(1H1,1X,,WAVELENGTH OUT OF RANGE IN GAUNT,-F10;2) .-

GAUNT=2,0
-RETURN

.ETID



FUNCTION~ BL.KBDY,(APT)
C THIS FUNCTION CALCULATES TH~E RLACKBODY
C RADIATION, IN(VWATTs/SR-CM**3) FOR A
C GIVEN WAVELENGTH(A-ANGSTROk S) AND A

-6 V~~EN TEliPtRBTURt (T-DEG' K)
C1=5.951EIP
C2=143.8b
W=A/1000.0
U=T/1000.Q
BLKBDY(/(EXP(C2/U/W)..))*((2*Cl)/(W**5))

END



FUNCTION ARND(T)
C THIS FUNCTIONAL ROUTINE CALCULATES THE
C ELECTRON AND ION NUMBER DENSITY IN CM-3
C (wHIC-H ARE ASSUMED EOUAL) FOR ARGON G A'S
C AT ONE ATMOSPHERE AND WITHIN THE TEMPERATURE
C RANGE OF 4 000-14000 DEG K. THIS PROGRAM
C INTERPOLATES BETWEEN VALUES THAT ARE 1000 DEG K
C APART ASSUMING AN N=A*T**(5/4)*EXP(B/T) DEPENDENCE
C THE DATA POINTS ARE TAKEN FROM OLSENS GASCOMP
C PROGRAM'REPORTED ON IN ARL 70-0048 MARCH 1970

DIMENSION DT(15)PDN(15)
IF((T.LT.40000).OR.(T.GE.14000,

0 )) GO TO 201
00 100 I=1p 1 5

DT(I)=:T1 0 0 0 0
DN(I):O,O

"I0'O CONTINUE
DN(4) = 1.27E10
DN(5) = 1,32E12
DN(6) = 2,94E13
DN(7) = 2.72E14
DN(8) = 1.45E15

. . ..DN(9).=- 5-. 34L E15 . .
DN(10)= 1.51E16
DN(11)= 3.46E16
DN(12)= 6,62E16
DN(13)= 1.08E17
DN(14)= 1.50E17
DO 101 1T413 ............--.........

IF((T.GE.DT(I)).AND.(TLTDT(I+))) GO0 TO 195
101 CONTINUE

GO TO 201
195 A=DN(I)

X=(ALO3G(DN(I+1)/DN(I))-(5*°/4*0)*(ALOG(DT(I+I)/DT(I)))
B=(DT(I)*[ T(I+1)*X)/( 0 T(I)-.T(I+ 1)).. .
A=(DN(I))/((DT(I)**(5.0/O))(EXP(B/DT(I)))



RETURA'
201 WRITE(St202) T
202 FORMAT(1H1tTEMPERATURE OUT OF RANGE IN ARND T IS',F10.1)

ARND=1.OE13
RETURN
END



FUNCTI)r.4 ECE0(TNvWL)
C THIS FUNCTION~ CALCULATES THE C0NTINuUUi
C EMISSIONi IN 4JATTS/SR-CM**4 OF ARGONJ
C AS A FUNCTION,. OF TEMPE'IATURE(T-DEG.K),
C N0v3ER DhE"JSITY OF IONS OR ELECTRON'S
C WH-ICH ARE ASSUMM~ED' ElUAL(N-CM**-3)p
C AND WAVELENSTH(WL-ANGSTROM1S),

REAL K(~pN' F
-$+. 14E-15
Ks. 616E-5
C=3.0E18

- V=C/WL--
U2=5. 519

NF=N/1. CE5
Z=(NF*I*2) /(SQRT(T) *WL**2)
ECEQ(1.65E.Og*Z)*(Y*(1...X)+X)
RETURN

t-A



SUSROUTINE 1.SQ(XYNORDRo,NTlP3o
#C P)

DI4MEN3SN X(NY),Y(NY),3(NY),CC(NY'!Y)PC(NY)
INTEGER P,Q,PQ
PG=0
M=NORR+1
DO 10 Q=1,1
S(Q)=0.
DO 15 I=1,NY
Bt)=(0)+y(I)sX(I)t*(Q-1)

15 CONTINUE
DO 20 P=1,M
CC(P, )=0.
DO 25 I=1,NY
CC(PQ)=CC(PFQ)+X(I)**(P+0- 2 )

-25 CONTINUE
20 CONTINUE
10 CONTINUE

DO 30 3=1,"
DO 35 P=1,M
L=Q+(P-I)*M

-- . C(L)=CC(P,)
35 CONTINUE
30 CONTINUE

CALL SIMQ(C,BtMKS)
IF(KS.EQ.!,) PQ=2 •
RETURN

'D-ND



SUBROUTINE COEFF(X,YNYIFITNORDRPIPLOT,IRPRE,PO,
$ ApBCt,DCCXUYU)

C
DIMENSION X(NY),Y(NY)
DIMENSION A(NY)rB(NY)C(Ny'),D(NY)
DIMENSION CC(NyNY)
DIMENSION XU(NY),YU(NY),RE(NY)
INTEGER PQ
DATA EPS/.01/
GO TO 77
ENTRY INTRP4(XIYI,IFIT)

C
GO TO (31,P2),IFIT

C
31 DO 20 I=1,NYP

K=I
IF(XI.LT.X(I+1)) GO TO 21

20 CONTINUE
21 YI = A(K)*XI**+B(K)*XI**2+C(K)*XI+D(K)

.RETURIRN
C

32 YI=O,
DO 34 J=1,MM
YI=YI+B(J)*XI**(J-1)

34 CONTINUE
RETUR J

C *** CALCULATE FITTING COEFFItIENTS ***

77 IF(IPLOT.eG.5 .OR. IPLOT.EQ.8) 60 TO 500
IF(IPLOT.r-.7) GO TO 200

GO TO (4i,4),IFIT
C

i41 NYP=NY-j



DO In K=lrmyp

.C COMPUTE CONSTANTS
xo=X(K-J)
XK=X(K)
xl=x(w+J)
X2=X (A +a)

YO=Y(A-1)

YK=y
YI=Y(K+I)
Y2=Y(K+a)
XCG=XO*XO
XKS=XK*XK
xl.s=xl*xl
X2S=X2*X2
xoc=-Xo,*Xo
XKC=XKS*XK
xlc=xls*xl
X2C=X25*X2
XMO=XK-XO

...... XMI=XK-Xl
XMP--XK -X2--
Ymo=YK-yo
YMI=YK-yl

V-12=YK-Y2
XMDS=XKS-xos
XMIS=XKS-Xls

'X,'4PS=XKS-w)(2S
XHOC=XKC-XOC
-XMlC=XKC-XIC

IF(K.- .I) GO TO 11
IF(K.E,').NYP) Go TO 12



C FOR INTERNJAL PANELS (K=2,NYP-l)
A(K)= ((YMO*Xr4-YM1*XMo)*(XM0S*XM2-XM2S-*XMO)
1 -(YM0*XM2-YM2*Xm4o)*(X1OS*Xm1-XM1S.X.40)
2 71 U(X C*XMJ-XM1IC*XMO)*(XMS*X42-XM2S*XMO)
3 -(XM0C*XM2-XMC*X4O)*(X40S*XM-XMS*XMO))

1 / XM1OS*XM2-XA125*XM10)
C(K)= ( YM0-AlK)*XMQC-93(K)*XM0S )/(XMo)
D(K)= YK -A(K)*XKC -B(K)*XKS C(K)*XK
GO -o 1 o , -- -- . -I ._.-

C FOR LEFTMOST PANEL (K1l)
11 A(K)=O.

S(K)= (Ykil*XM2-Y?6'2*XM1) / (XMIS*XM2-XM2S*XMJ)
C(K)= (YMl-B(K)*XMlS)/(XMl)
D(K) YK-B(K)*XKS-C(K)*XK
GO TO 10

c FOR RIGHTM1OST PANEL (K=NYP)
12 A(K)=0. (~O*M~MSX

B(K)= (Yhl0*Xft1-Y~11*XN1) / XO*MXISM)
C(K)= (YMO-BC(0)*)QOS')f/tXMO)

10 (K)= YK-iB(K)*XKS-C(K)*XK

RET uRfI

~42 MM=NORDR+l
RETURN~

C LEAST _SQUA-RES-WITH I/REL.OERR, VEIGHTING
200 L~o

'MMNOiOR+1
207 Rr'.AX=0J.

DO 201 X~ilY

210-DO Z02 I~lp NY



IF(RE(I).LTEPS) RE(I)=EPS
NUM=AMIN1(1,RMAX/RE(I)+EPS)
IF(NUM.LE.0) GO TO 202
DO 203 J=1,NUI

XU(L)=X(I)
YU(L)=Y(I)

203 CONTINUE
202 CONTINUE

IF(IPLOT.EQ.8) GO TO 520
IF(L.LE.30) GO TO 205

--RMAx=RMAX/1.4
WRITE(6,299) L

299 FORMAT(21H WIDE WEIGHTING RANGE,I5,14H wTS REDUCED)
L=O
GO TO 210

205 CALL LSQ(XUYU,NORDRL,BCCCPQ)
-... RETURN .

C
C LEAST SQUARES FIT TO HISTOGRAM DATA

- -wITH OR WITHOUT I/REL,ERR. wEIGHTING
500 MM=NORDR+1

R=IR
IF(IPLOT.E0.8) GO TO 207

520 LX=O
NBR=O
DO 1701 J=1,MM"
B(J)=0.
DO 1711 I=I,NY
NUM=1
IF(IPLOT.EO.8) NUM=AMIN1(jO,,RMAX/RE(I)+EPS)
IF(NU~.LE.0) GO TO 1711
DO 503 LM=I,NUM
B(J)=S(J)+((R+1.)*(X(I+1)**(J+IR)-X(I)**(J+IR))*Y(I))

1 /((FLOAT(J)+R)*(X(I+I)**(IR+I)'X(I))*(IR+I)))



503 CONTINUE
1711 CONTINUE

DO 1702 K=1,MM

DO 1712 L-1INY
NUt=I
IF(IPLOT.EQ.8) NUM=AMINL(10.,RMAX/RE(T)+EP5)
IF(NU-.LE.0) Go0 TO 1712
-00 510 LM=1,NUM

. .CC (j K)C( J F:"~ .T R-;)1j, 2RI* €XTT+*%(*{+I RT-XTIT * lO-IR ). .
1 *(X(I+1)**(K+IR)-X(i)**(K+IR)) )
2 / (TFLOATJ)+R)(FLOAT(K +R)-*(X(I;+1)*((IR+I)
3 -X(I)**(IR+1))es2 )

..510 CONTINUE
1712 CONTINUE
.... NBRR+NNUM ......

LX=J+(K-l)*MM
. C LX) =CC (JK)

1702 CONTINUE
170 TCONTIN UE .

IF(NBR.LE.225) 60 TO 1111
RM AX=R MAX 7i ',4 ............... - I-i- ....~~~~ : .. . . . . . .. . . . . . . . .. .
WRITE(5,299) NBR

__ GO TO-520
C
-1111 CALL SIMQ(:C B,MM lIT) .

IF(IT*EQ.1) GO TO 999

WRITE(6,47)
47 FORMAT- 21H *** SINGULAR MATRUIX" ' -r - -.

9999 RETURN 0
999 RETURN..

END



SUBROUTINE SIMQ(AB,N,KS)
DIMENSION A(1), B(1)

C A - MATRIX OF COEFFICIENTS STORES-THE ROWS OF AN NXN MATRIX
C - IN ONE COLUMN. TiE N ELEMENTS OF THE FIRST ROW FORM THE
C FIRST N ELEMENTS OF THE A MATRIX8 THE SECOND ROW FORMS
C -THE NEXT N ELEMENTS OF A ECT,
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE, THESE ARE
C DESTROYED IN THE COMPUTATION, THE SIZE OF MATRIX A IS
C N BY N.
C - VECTOR OF ORIGINAL CONSTANTS (LENGTH N)-, THESE ARE
C REPLACED BY FINAL SOLUTION VALUES, VECTOR X,

".. . ... -NUMBER OF-EQUATIONS-AND V'ARTABLES. ....
C KS - OUTPUT DIGIT,
C -O-FOR A NORMAL SOLUTION,
C 1 FOR A SINGULAR SET OF EQUATIONS,

TOLE=O, 0
KS=0

00 65JI N

JJ:JJ+N+l
BIGA=0. -

IT=JJ-J

IJ=IT+I
IF ( ABS(BIGA) - ABS(A(IJ))) 20,30,20 .

20 BIGA=A(IJ)
.IMAX=I

30 CONTINUE
- IF ("A3S(GA)"- TOL) 35,35040

35 KS=I
- RETURN.

40 II=J+N*(J.2)
ITi=MAXJ..... .



'DO 50 K~jtN

-- _ 121l1+tq . - - .- . -- l ....

- A(I2)=SAVE
50 A(I1)=A(I1)/BIGA

SAVE=BdIMAX . -. -...-..-

B(IMAX)=B(J) . .

00 65 IX=JYtN

IT=,J-IX
00 60 JX=JYPN .. ..

IXJX=N*(Jx-1)+JX

60. A(IXCJX)=A(IXJX)-(A(IXJ)*A(JJX.))

70 NY=N-1 ...

DO 80 J--lNY

18=N-J

DO 80 K(1,~j

80 ic"1C-1 -

- RETURN [
.EN) 

... . .- . ... ..

ILa
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